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Diastereoselective synthesis of 5-(alditol-1-C-yl)-hydantoins and
their use as precursors of polyhydroxylated-a-amino acids
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Abstract—The synthesis of 5-(alditol-1-C-yl)-hydantoin derivatives was performed via diastereoselective aldol-type addition of 1,3-
dibenzyl-hydantoin to enantiopure aldehydo sugars. Starting from the DD-ribo-configured 5-(alditol-1-C-yl)-hydantoin template, the
synthesis of (2R,3S,4R)-3,4,5-trihydroxynorvaline was carried out.
� 2003 Elsevier Ltd. All rights reserved.
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Figure 1.
The search for new synthetic methodologies for the
synthesis of enantiomerically pure bioactive molecules is
an area of great interest in modern synthetic organic
chemistry. A complex structure or the presence of mul-
tiple stereocentres makes the synthetic approach to these
molecules a stimulating task.

Among the different strategies used, the stereoselective
and versatile approach based, as a key operation, on
carbon–carbon bond formation between heterocycles
and enantiopure sugar-derived templates has been
widely used. Five-membered heterocycles such as furan,
pyrrole, thiophene,1 thiazole2 and isoxazoline3 deriva-
tives or six-membered heterocycles such as substituted
2,5-diketopiperazines4 have shown their utility for the
synthesis of a wide set of molecules of biological interest.

In this field we have recently reported the use of di-
hydrouracil for the diastereoselective chain extension
of isopropylidene-protected glyceraldehyde.5

Proceeding with our programme aimed to develop new
stereoselective procedures for the synthesis of enantio-
pure bioactive molecules, we have directed our attention
towards hydantoin, a five-membered analogue of dihy-
drouracil, as a new homologating reagent for aldehydo
sugars (Fig. 1).6
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For this purpose hydantoin is an important molecule
because hydantoin derivatives such as 5-C-glycosylated
hydantoins show pharmacological or phytopharma-
cological activity. Specifically, the spirohydantoin of
glucopyranose 1 is a potent inhibitor of glycogen
phosphorylase and has been examined for the treatment
of late-onset diabetes,7 while hydantocidin 2, a ribo-
furanosyl spirohydantoin, displays potent herbicidal
activity.6;8;9

Furthermore, since this heterocycle has been used as a
synthetic equivalent of glycine by chemical or enzymatic
ring opening,10 5-(alditol-1-C-yl)-hydantoin derivatives
are precursors for the synthesis of sugar amino- and
ureido-acid hybrids.

Herein is disclosed the simple and diastereoselective
synthesis of 5-(alditol-1-C-yl)-hydantoin derivatives via
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the aldol-type addition of 1,3-dibenzyl-hydantoin
(DBH) 4 to enantiopure aldehydo sugars 5 and 10.
Extending the scope of this methodology, the synthesis
of the polyhydroxylated-a-amino acid 12 is also re-
ported. Trihydroxylated norvaline congeners are bio-
logically important molecules. For example, (2S,3S,4S)-
3,4,5-trihydroxynorvaline [(+)polyoxamic acid] is a
component of the polyoxins, an important family of
complex peptidyl nucleosides with potent antibiotic
activity.11
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Initially we prepared DBH 4 by N-protection of com-
mercially available hydantoin 3 under weakly basic
conditions in 85% yield (Scheme 1).12

Then we examined the addition reaction of the aldehyde
5 with the DBH lithium enolate, derived from the
reaction of 4 with 1.2 equiv of LiHMDS in anhydrous
THF at )80 �C. After quenching and aqueous workup,
DD-ribo-configured 5-(alditol-1-C-yl)-hydantoin 6 was
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Scheme 1.
obtained in high yield and good diastereoselectivity with
a small amount of its C-5 epimer 7 (80/20 isomer ratio
6/7 determined by NMR analysis) (Scheme 1).13 Purifi-
cation of compound 6 was achieved at this stage by
crystallization of the crude reaction mixture from
CH2Cl2/hexane 1/3 or by flash chromatography (hex-
anes/EtOAc 6/4) of the protected mixture of 8 and 9
obtained by exposure of the crude material to TBSOTf
in CH2Cl2 in the presence of 2,6-lutidine.14 Epimeriza-
tion at C-5 was observed when compound 6 was allowed
to react from )80 to )30 �C with 2.0 equiv of LDA for
3 h. After aqueous workup, the two epimers 6 and 7
were obtained in a 73/27 isomeric ratio.

The (5R,10S) configuration of the two new stereocentres
in 5-(alditol-1-C-yl)-hydantoin 6 was unambiguously
established by single crystal X-ray analysis on the basis
of the known (R) configuration at the 20 carbon atom
(Fig. 2).15;16 On the basis of the configurations of the
stereocentres of compound 6 the (5S,10S) configuration
of its C-5 epimer 7 can be inferred.

Formation of 5,10-anti-10,20-anti aldol 6 and 5,10-syn-
10,20-anti aldol 7 results from an unlike (Re enolate, Si
aldehyde) and like (Si enolate, Si aldehyde) approach,
respectively, of the reaction partners in the addition
step. In both cases the Si-face of aldehyde 5 reacts
selectively.17

To demonstrate the synthetic versatility of this procedure
for the diastereoselective preparation of 5-(alditol-1-C-
yl)-hydantoin derivatives containing multiple stereo-
genic centres and different lengths of the polyol chains,
the synthesis of hydantoin templates 11 was also
undertaken (Scheme 2).

The addition of 2,3:4,5-di-O-isopropylidene-DD-xylose 10
to DBH lithium enolate under the same reaction
conditions reported for the glyceraldehyde derivative
furnished preferentially DD-glycero-LL-talo configured 5-
(alditol-1-C-yl)-hydantoin 11 in 70% yield (a 72/28 iso-
meric ratio was detected by NMR analysis of the crude
material).18
Figure 2. X-ray diffraction structure of compound 6. Thermal ellip-

soids are drawn at the 30% probability level. Stereocentres at positions

5, 10 and 20 are labelled as C3, C4 and C5, respectively.
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Starting from the DD-ribo-configured enantiopure pre-
cursor a simple procedure for the synthesis of the bio-
logically important polyhydroxylated-a-amino acid 12
was carried out. When compound 6 was refluxed with
57% HI, the acetonide and benzyl protecting groups
were removed with concomitant hydrolytic cleavage of
the heterocyclic ring (Scheme 3). After ion-exchange
chromatography with Amberlyst H 15 (Hþ form), 2-
amino-2-deoxy-DD-ribonic acid 12 was obtained in 48%
yield. The optical rotation for 12 [)3.0 (c 0.37, H2O)]
and its NMR spectra matched well with the reported
data of an authentic sample of 12.11b;c

In conclusion, we have shown the use of 1,3-dibenzyl-
hydantoin as homologating reagent for the diastereo-
selective chain extension of aldehydo sugars. Enantio-
merically pure 5-(alditol-1-C-yl)-hydantoin derivatives
with variable polyol chains have been synthesized in
good diastereoselectivity and yield. Starting from the
DD-ribo-configured enantiopure precursor, a simple pro-
cedure for the synthesis of the biologically important
trihydroxylated norvaline 12 was realized. Application
of this procedure to the synthesis of sugar amino and
ureido acid hybrids is in progress.
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